depmixS4
A flexible package to estimate mixture and hidden Markov models

Maarten Speekenbrink (m.speekenbrink@ucl.ac.uk) and Ingmar Visser
LondonR, 10 September 2013
The objective of the package is to provide a flexible implementation of mixture and hidden Markov models. Mixture components are (mostly) implemented as generalized linear models. Using S4, users can easily define their own observation models.

• An R package to estimate dependent mixture models

• Written by Ingmar Visser (University of Amsterdam) and Maarten Speekenbrink (University College London)

• First version (0.1.0) was released on CRAN on 26-Mar-2008. The current development version is 1.3.0 (available on RForge and soon on CRAN).

The objective of the package is to provide a flexible implementation of mixture and hidden Markov models. Mixture components are (mostly) implemented as generalized linear models. Using S4, users can easily define their own observation models.
Mixture models

In a *mixture model*, each observation is assumed to be drawn from one of a number of distinct subpopulations (component distributions). Which subpopulation an observation is drawn from is not directly observable and represented by a latent state.

A mixture distribution over observations $Y_t, t = 1, \ldots, T$, is defined as

$$p(Y_t = y) = \sum_{i=1}^{N} p(Y_t = y | S_t = i) P(S_t = i)$$

where

- $S_t \in \{1, \ldots, N\}$ denotes the latent state (a.k.a. "class", "component") of observation t
- $P(S_t = i)$ denotes the probability that the latent state at t equals i
- $p(Y_t = y | S_t = i)$ denotes the density of observation Y_t (evaluated at y), conditional upon the latent state being $S_t = i$; i.e., it is the value of the i-th component density (evaluated at y).
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i) \]
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t|S_t = i)P(S_t = i) \]

Model components:

- \(p(Y_t|S_t = 1) = N(5.48, 0.13) \)
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t|S_t = i)P(S_t = i) \]

Model components:

- \(p(Y_t|S_t = 1) = N(5.48, 0.13) \)
- \(P(S_t = 1) = 0.33 \)
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i)P(S_t = i) \]

Model components:

- \(p(Y_t | S_t = 1) = N(5.48, 0.13) \)
- \(P(S_t = 1) = 0.33 \)
- \(p(Y_t | S_t = 2) = N(6.31, 0.32) \)
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t|S_t = i)P(S_t = i) \]

Model components:

- \(p(Y_t|S_t = 1) = N(5.48, 0.13) \)
- \(P(S_t = 1) = 0.33 \)
- \(p(Y_t|S_t = 2) = N(6.31, 0.32) \)
- \(P(S_t = 2) = 0.67 \)
Mixture distribution:

\[p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i)P(S_t = i) \]

Model components:

- \(p(Y_t | S_t = 1) = N(5.48, 0.13) \)
- \(P(S_t = 1) = 0.33 \)
- \(p(Y_t | S_t = 2) = N(6.31, 0.32) \)
- \(P(S_t = 2) = 0.67 \)
- \(p(Y_t) \)
Dependent mixture models

In a *dependent mixture model*, states are assumed to be statistically dependent. The process underlying state transitions is a homogenous first-order Markov process. This process is completely defined by the initial state probabilities

\[P(S_1 = 1), \ldots, P(S_1 = N) \]

and the state transition matrix

\[
\begin{pmatrix}
P(S_t = 1|S_{t-1} = 1) & P(S_t = 2|S_{t-1} = 1) & \cdots & P(S_t = N|S_{t-1} = 1) \\
P(S_t = 1|S_{t-1} = 2) & P(S_t = 2|S_{t-1} = 2) & \cdots & P(S_t = N|S_{t-1} = 2) \\
\vdots & \vdots & \ddots & \vdots \\
P(S_t = 1|S_{t-1} = N) & P(S_t = 2|S_{t-1} = N) & \cdots & P(S_t = N|S_{t-1} = N)
\end{pmatrix}
\]

Implementation in \texttt{depmixS4}

Models are estimated using Expectation-Maximization (EM) or numerical optimization (when parameters are constrained). The structure of a dependent mixture model allows it to be divided into three submodels:

- The prior model: \(P(S_1|x, \theta_{\text{prior}}) \)
- The transition model: \(P(S_t|x, S_{t-1}, \theta_{\text{trans}}) \)
- The response model: \(P(Y_t|S_t, x, \theta_{\text{resp}}) \)

The prior and transition models are implemented as multinomial regression models, and the response models as generalized linear models. Within the EM algorithm, the maximization-step can be performed by weighted maximum likelihood (as in e.g., \texttt{glm.fit()}).
Using **depmixS4**

Mixture models can be constructed using the `mix()` function, and hidden Markov models with the `depmix()` function. The `depmix()` function takes the following arguments:

1. **response**: a formula specifying the response models (univariate) or a list with formulae (multivariate)
2. **nstates**: the number of states/components
3. **data**: the data frame containing the variables in the response models
4. **family**: the family of the response models (as in the `glm` function) or a list with families (multivariate)
5. **ntimes**: a vector with the length of each time-series in the data.

More general models can be constructed with the `makeDepmix()` function. Models are estimated by calling the `fit()` function on a constructed model.
Example 1: Climate change
Climate change

Data from the Water Corporation of Western Australia containing the yearly inflow in water catchment dams around Perth, South-west Australia from 1911 through to 2012.
Climate change

1. Is there a trend in these data?
2. Are there sudden shifts in the catchment amounts?

Perth dams water inflow

[Graph showing water inflow over years from 1925 to 2000]
Typical analyses: linear models

```r
lm1 <- lm(water ~ 1, data = perth)
lmyr <- lm(water ~ yr, data = perth)
lmyr2 <- lm(water ~ yr + I(yr^2), data = perth)
anova(lm1, lmyr, lmyr2)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: water ~ 1</td>
<td>101</td>
<td>3811695</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2: water ~ yr</td>
<td>100</td>
<td>3257024</td>
<td>1</td>
<td>554671</td>
<td>18.7</td>
<td>3.7e-05***</td>
</tr>
<tr>
<td>Model 3: water ~ yr + I(yr^2)</td>
<td>99 2939677</td>
<td>1 317347 10.7 0.0015 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(both linear and quadratic trends are significant)
Typical analyses: linear models

Perth data: linear models
Typical analyses: AR models

arOrder <- ar(perth$water)$order
ar1 <- arima(perth$water, c(arOrder, 0, 0))
aryr <- arima(perth$water, c(arOrder, 0, 0), xreg = perth$yr)
aryr2 <- arima(perth$water, c(arOrder, 0, 0), xreg = cbind(yr = scale(perth$yr),
 yr2 = scale(perth$yr)^2))
print(c(ar1 = AIC(ar1), aryr = AIC(aryr), aryr2 = AIC(aryr2)))

<table>
<thead>
<tr>
<th></th>
<th>ar1</th>
<th>aryr</th>
<th>aryr2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1355</td>
<td>1349</td>
<td>1344</td>
</tr>
</tbody>
</table>

Compare to linear models:
innerCode
print(c(lm1 = AIC(lm1), lmyr = AIC(lmyr), lmyr2 = AIC(lmyr2)))

<table>
<thead>
<tr>
<th></th>
<th>lm1</th>
<th>lmyr</th>
<th>lmyr2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1367</td>
<td>1353</td>
<td>1345</td>
</tr>
</tbody>
</table>
Typical analyses: AR models
Change point models

1. Assume one or more discrete change points in the data

2. Mean, trend, and/or other parameters (e.g., AR parameters) of the process may change

Can be estimated with hidden Markov models by restricting the transition matrix

Transition matrix for 1 change point

\[
\begin{pmatrix}
p_1 & 1 - p_1 \\ 0 & 1
\end{pmatrix}
\]

Transition matrix for 2 changepoints

\[
\begin{pmatrix}
p_1 & 1 - p_1 & 0 \\ 0 & p_2 & 1 - p_2 \\ 0 & 0 & 1
\end{pmatrix}
\]

Transition matrix for 3 changepoints

\[
\begin{pmatrix}
p_1 & 1 - p_1 & 0 & 0 \\ 0 & p_2 & 1 - p_2 & 0 \\ 0 & 0 & p_3 & 1 - p_3 \\ 0 & 0 & 0 & 1
\end{pmatrix}
\]

Et cetera

In HMM literature these models are also called left-right models or Bakis models
Model with 1 changepoint

In the EM algorithm, probabilities initialized as 0 or 1 remain there, so provide starting values according to change point models and all will be fine...

```r
mod2 <- depmix(water ~ 1, data = perth, ns = 2, trst = c(0.9, 0.1, 0, 1), inst = c(1, 0))
set.seed(1)
fm2 <- fit(mod2, verbose = FALSE)
```

Converged at iteration 3 with logLik: -654.5

```
depmixS4::summary(fm2)
```

Initial state probabilities model

<table>
<thead>
<tr>
<th></th>
<th>pr1</th>
<th>pr2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition matrix

<table>
<thead>
<tr>
<th>toS1</th>
<th>toS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromS1</td>
<td>0.9845</td>
</tr>
<tr>
<td>fromS2</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Response parameters

Resp 1: gaussian

<table>
<thead>
<tr>
<th>Resp</th>
<th>Re1.(Intercept)</th>
<th>Re1.sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>St1</td>
<td>337.0</td>
<td>204.08</td>
</tr>
<tr>
<td>St2</td>
<td>141.4</td>
<td>76.16</td>
</tr>
</tbody>
</table>
Predicting states

Use the `posterior()` function to obtain the maximum a posteriori state sequence (column 1) and the posterior state probabilities (remaining columns).

```r
pst <- posterior(fm2)
head(pst)

<table>
<thead>
<tr>
<th>state</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.9489</td>
<td>0.0511</td>
</tr>
<tr>
<td>3</td>
<td>0.8312</td>
<td>0.1687</td>
</tr>
<tr>
<td>4</td>
<td>0.6558</td>
<td>0.3442</td>
</tr>
<tr>
<td>5</td>
<td>0.9849</td>
<td>0.0151</td>
</tr>
<tr>
<td>6</td>
<td>0.9536</td>
<td>0.0464</td>
</tr>
</tbody>
</table>

pst[, 1]

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[71] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
```
Model with 2 changepoints

```r
# 2-state models
mod3 <- depmix(water ~ 1, data = perth, ns = 3, trst = c(0.9, 0.1, 0, 0, 0.9,
                                                        0.1, 0, 0, 1), inst = c(1, 0, 0))
set.seed(1)
fm3 <- fit(mod3, verbose = FALSE)
## EM converges to a local maximum, so it is advisable to fit a model
## repeatedly with different random starting values
for (i in 1:100) {
  try(tfm3 <- fit(mod3, verbose = FALSE))
  if (logLik(tfm3) > logLik(fm3))
    fm3 <- tfm3
}
```
Model with 2 changepoints

```r
summary(fm3)
```

Initial state probabilities model

<table>
<thead>
<tr>
<th></th>
<th>pr1</th>
<th>pr2</th>
<th>pr3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition matrix

<table>
<thead>
<tr>
<th></th>
<th>toS1</th>
<th>toS2</th>
<th>toS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromS1</td>
<td>0.9845</td>
<td>0.0155</td>
<td>0.0000</td>
</tr>
<tr>
<td>fromS2</td>
<td>0.0000</td>
<td>0.9598</td>
<td>0.04018</td>
</tr>
<tr>
<td>fromS3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Response parameters

<table>
<thead>
<tr>
<th>Resp 1 : gaussian</th>
<th>Re1.(Intercept)</th>
<th>Re1.sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>St1</td>
<td>336.99</td>
<td>204.2</td>
</tr>
<tr>
<td>St2</td>
<td>171.00</td>
<td>71.3</td>
</tr>
<tr>
<td>St3</td>
<td>83.49</td>
<td>46.3</td>
</tr>
</tbody>
</table>
Changepoint models

The relative drought that started after 1976 is possibly related to the then occurring El Nina/El Nino event.
AR-like models with changepoints

```r
mod2 <- depmix(water ~ wtmin1, data = perth[-1, ], ns = 2, trst = c(0.9, 0.1, 0, 1), inst = c(1, 0))
set.seed(123)
fm2ar <- fit(mod2, verbose = FALSE)
for (i in 1:100) {
  tfm2ar <- fit(mod2, verbose = FALSE)
  if (logLik(tfm2ar) > logLik(fm2ar))
    fm2ar <- tfm2ar
}
mod3 <- depmix(water ~ wtmin1, data = perth[-1, ], ns = 3, trst = c(0.9, 0.1, 0, 0, 0.9, 0.1, 0, 0, 1), inst = c(1, 0, 0))
set.seed(123)
fm3ar <- fit(mod3, verbose = FALSE)
for (i in 1:100) {
  try(tfm3ar <- fit(mod3, verbose = FALSE))
  if (logLik(tfm3ar) > logLik(fm3ar))
    fm3ar <- tfm3ar
}
AR-like models with changepoints

Change point in the same year as the 'ordinary' changepoint model
## Model selection

<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>lm1</td>
<td>1367.3819</td>
<td>1372.6318</td>
</tr>
<tr>
<td></td>
<td>lmyr</td>
<td>1353.3413</td>
<td>1361.2163</td>
</tr>
<tr>
<td></td>
<td>lmyr2</td>
<td>1344.8849</td>
<td>1355.3848</td>
</tr>
<tr>
<td>arima</td>
<td>ar1</td>
<td>1355.3371</td>
<td>1363.2121</td>
</tr>
<tr>
<td></td>
<td>aryr</td>
<td>1348.9058</td>
<td>1359.4057</td>
</tr>
<tr>
<td></td>
<td>ary2</td>
<td>1343.6796</td>
<td>1356.8044</td>
</tr>
<tr>
<td>hmm linear</td>
<td>fm2</td>
<td>1332.82</td>
<td>1345.9449</td>
</tr>
<tr>
<td></td>
<td>fm3</td>
<td>1327.9301</td>
<td>1348.9299</td>
</tr>
<tr>
<td>hmm ar</td>
<td>fm2ar</td>
<td>1318.7176</td>
<td>1337.0924</td>
</tr>
<tr>
<td></td>
<td>fm3ar</td>
<td>1316.0646</td>
<td>1344.9393</td>
</tr>
</tbody>
</table>
Example 2: Bull and bear markets
S & P 500 returns

```r
library(TTR)
load SP500 returns
Sys.setenv(tz = "UTC")
sp500 <- getYahooData("^GSPC", start = 19500101, end = 20120909, freq = "daily")
ep <- endpoints(sp500, on = "months", k = 1)
sp500 <- sp500[ep[2:(length(ep) - 1)]]
sp500$logret <- log(sp500$Close) - lag(log(sp500$Close))
sp500 <- na.exclude(sp500)
```
S & P 500 returns

plot(sp500$logret, main = "S&P 500 log returns")

S&P 500 log returns

Bull and bear markets?

mod <- depmix(logret ~ 1, nstates = 2, data = sp500)
set.seed(1)
fm2 <- fit(mod, verbose = FALSE)

converged at iteration 88 with logLik: 1348

depmixS4::summary(fm2)

Initial state probabilities model
 pr1  pr2
 0   1

Transition matrix
toS1  toS2
fromS1 0.82151 0.1785
fromS2 0.03914 0.9609

Response parameters
Resp 1 : gaussian
        Rel.(Intercept)  Rel.sd
St1    -0.01505 0.06484
St2     0.01045 0.03378
Classification (1)

tsp500 <- as.ts(sp500)
pbear <- as.ts(posterior(fm2)[, 2])
tsp(pbear) <- tsp(tsp500)
plot(cbind(tsp500[, 6], pbear), main = "Posterior probability of state 1 (volatile, negative markets).")
Classification (2)

mapbear <- as.ts(posterior(fm2)[, 1] == 1)
tsp(mapbear) <- tsp(tsp500)
plot(cbind(tsp500[, 6], mapbear), main = "Maximum a posteriori state sequence")
Example 3: Speed-accuracy trade-off
Speed accuracy trade-off task

1. lexical decision: word or non-word
2. reward for speed versus accuracy changes on a trial-by-trial basis
3. is the trade-off discrete of gradual?

man
Speed accuracy trade-off data

1. What is the relationship between Pacc, RT and accuracy?
2. Is the trade-off continuous or discontinuous?
Speed accuracy trade-off

Preliminaries: data bi- or multi-modal?
Speed accuracy trade-off

Preliminaries: dependence in the data?

![ACF plot](image)
A simple hidden Markov model

data(speed) # included in depmixS4
mod1 <- depmix(list(rt~1,corr~1),
data=speed,
nstates=2,
family=list(gaussian(),multinomial("identity")),
ntimes=c(168,134,137))

# fit the model
set.seed(1234)
fmmod1 <- fit(mod1, verbose=FALSE)

converged at iteration 24 with logLik: -296.1
### Parameter estimates

```r
depmixS4::summary(fmod1)
```

**Initial state probabilities model**

<table>
<thead>
<tr>
<th></th>
<th>pr1</th>
<th>pr2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Transition matrix**

<table>
<thead>
<tr>
<th></th>
<th>toS1</th>
<th>toS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromS1</td>
<td>0.89886</td>
<td>0.1011</td>
</tr>
<tr>
<td>fromS2</td>
<td>0.08359</td>
<td>0.9164</td>
</tr>
</tbody>
</table>

**Response parameters**

<table>
<thead>
<tr>
<th>Resp 1: gaussian</th>
<th>Resp 2: multinomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel.(Intercept)</td>
<td>Re1.sd    Re2.pr1 Re2.pr2</td>
</tr>
<tr>
<td>St1</td>
<td>5.521     0.2023   0.47207   0.5279</td>
</tr>
<tr>
<td>St2</td>
<td>6.392     0.2396   0.09851   0.9015</td>
</tr>
</tbody>
</table>
Accounting for the effect of Pacc

Using Pacc as a covariate on the transition probabilities

data(speed)
mod2 <- depmix(list(rt~1,corr~1),
data=speed,
transition=~Pacc,
nstates=2,
family=list(gaussian(),multinomial("identity")),
ntimes=c(168,134,137))

# fit the model
set.seed(1234)
fm2 <- fit(mod2, verbose=FALSE)

converged at iteration 24 with logLik: -249
## Model parameters

```r
depmixS4::summary(fmod2, which = "response")
```

<table>
<thead>
<tr>
<th>Response parameters</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp 1 : gaussian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp 2 : multinomial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re1.(Intercept)</td>
<td>Re1.sd</td>
<td>Re2.pr1</td>
<td>Re2.pr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St1</td>
<td>5.522</td>
<td>0.2029</td>
<td>0.47426</td>
<td>0.5257</td>
<td></td>
</tr>
<tr>
<td>St2</td>
<td>6.394</td>
<td>0.2374</td>
<td>0.09572</td>
<td>0.9043</td>
<td></td>
</tr>
</tbody>
</table>
### Model parameters

```r
depmixS4::summary(fmod2, which = "transition")
```

Transition model for state (component) 1
Model of type multinomial (mlogit), formula: ~Pacc
<environment: 0x1af6c00>
Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>St1</th>
<th>St2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0</td>
<td>-4.223</td>
</tr>
<tr>
<td>Pacc</td>
<td>0</td>
<td>9.134</td>
</tr>
</tbody>
</table>

Probabilities at zero values of the covariates.
0.9856 0.01445

Transition model for state (component) 2
Model of type multinomial (mlogit), formula: ~Pacc
<environment: 0x1af6c00>
Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>St1</th>
<th>St2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0</td>
<td>-3.373</td>
</tr>
<tr>
<td>Pacc</td>
<td>0</td>
<td>15.804</td>
</tr>
</tbody>
</table>

Probabilities at zero values of the covariates.
0.9669 0.03314
Transition probability function

Transition probability functions

- $P_{\text{switch from FG to SC}}$
- $P_{\text{stay in SC}}$
Model checking

Autocorrelation function of the residuals of the RTs

![Chart showing autocorrelation function with lag values and ACF values]
Parameters constraints and inference

```r
c_pars <- c(unlist(getpars(fmod2)))

constrain the initial state probs to be 0 and 1 also constrain the
guessing probs to be 0.5 and 0.5 (ie the probabilities of corr in state 1)
pars[1] = 0
pars[2] = 1 # this means the process will always start in state 2
pars[13] = 0.5
pars[14] = 0.5 # the corr parameters in state 1 are now both 0, corresponding the 0.5 prob
mod3 <- setpars(mod2, pars)
```
Parameters constraints and inference

```r
fix the parameters by setting:
free <- c(0, 0, rep(c(0, 1), 4), 1, 1, 0, 0, 1, 1, 1, 1)
fit the model
fmod3 <- fit(mod3, fixed = !free)
```

Iter: 1 fn: 249.2129 Pars: -4.22283 9.13384 -3.37335 15.80431 5.52172 0.20292 6.39370 0.2
Parameters constraints and inference

Likelihood ratio test on the fitted models (note: as some of the parameters in mod3 are on the bound of the parameter space, the likelihood-ratio test is not exactly valid...)

```r
likelihood ratio not significant, hence fmod3 may be preferred to fmod2
llratio(fmod2, fmod3)

log Likelihood ratio (chi^2): 0.481 (df=2), p=0.786.
```