Using R to Model Complex Biogeochemical Systems

Chris Wood
chris.wood@southampton.ac.uk
Introduction to the science
Introduction to the science

- Why are we interested in sediments?
 - 71% of Earth’s surface (335,258,000 km²)
Introduction to the science

- Why are we interested in sediments?
 - 71% of Earth’s surface (335,258,000 km²)
 - Very dynamic environments
Introduction to the science

- Why are we interested in sediments?
 - 71% of Earth’s surface (335,258,000 km2)
 - Very dynamic environments

- Why are we interested in shelf-seas?
Introduction to the science

Why are we interested in sediments?

- 71% of Earth's surface (335,258,000 km²)
- Very dynamic environments

Why are we interested in shelf-seas?
Introduction to the science

- Why are we interested in sediments?
 - 71% of Earth’s surface (335,258,000 km2)
 - Very dynamic environments

- Why are we interested in shelf-seas?
 - Globally important sinks & sources for nutrients
Introduction to the science

- Why are we interested in sediments?
 - 71% of Earth’s surface (335,258,000 km²)
 - Very dynamic environments

- Why are we interested in shelf-seas?
 - Globally important sinks & sources for nutrients
 - High rates of primary productivity
The maths…
The maths…

- Despite the complexity, it can be described mathematically(!):
The maths…

- Despite the complexity, it can be described mathematically(!):

$$\frac{d(1 - \emptyset)c_i}{dt} =$$
The maths…

- Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \phi)c_i}{dt} = \text{Change in concentration of } i
\]
The maths…

- Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \phi)c_i}{dt} = \partial \left((1 - \phi)D_b \frac{\partial c_i}{\partial x} - \omega(1 - \phi)c_i \right)
\]

Change in concentration of i
The maths…

- Despite the complexity, it can be described mathematically(!):
Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \phi)c_i}{dt} = \partial \left((1 - \phi)D_b \frac{\partial c_i}{\partial x} - \omega(1 - \phi)c_i \right) - (1 - \phi)\Sigma \left(R(c_i, c_j) \right)
\]
The maths…

- Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \varphi)c_i}{dt} = \partial \left((1 - \varphi)D_b \frac{\partial c_i}{\partial x} - \omega(1 - \varphi)c_i \right) - (1 - \varphi)\sum_{j} R(c_i, c_j)
\]

- Change in concentration of i
- Transport of chemical species
- Rate of consumption of i, but dependent on j
The maths…

- Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \varphi)c_i}{dt} = \partial \left((1 - \varphi)D_b \frac{\partial c_i}{\partial x} - \omega(1 - \varphi)c_i \right) \frac{\partial}{\partial x} - (1 - \varphi)\Sigma \left(R(c_i, c_j) \right)
\]

- Oxic breakdown of organic matter:
The maths…

- Despite the complexity, it can be described mathematically(!):

\[
\frac{d(1 - \varphi)c_i}{dt} = \partial \left((1 - \varphi)D_b \frac{\partial c_i}{\partial x} - \omega (1 - \varphi)c_i \right) - (1 - \varphi)\Sigma \left(R(c_i, c_j) \right)
\]

- Oxic breakdown of organic matter:

\[
R_{O_2} = \kappa[OM] \left(\frac{[O_2]}{[O_2] + k_{s_{oxic}}} \right)
\]
Transport
Transport

- ReacTran package
Transport

- ReacTran package
- written for ecological and biogeochemical models; the examples in the vignette reflect this
Transport

- ReacTran package
- written for ecological and biogeochemical models; the examples in the vignette reflect this

 Grid <- setup.grid.1D(N=100, dx.1=0.1, L=15)
Transport

- ReacTran package
- written for ecological and biogeochemical models; the examples in the vignette reflect this

```r
Grid <- setup.grid.1D(N=100, dx.1=0.1, L=15)
  Grid$x.mid, Grid$x.int, Grid$dx
```
Transport

- **ReacTran package**

- written for ecological and biogeochemical models; the examples in the vignette reflect this

  ```r
  Grid <- setup.grid.1D(N=100, dx.1=0.1, L=15)
  - Grid$x.mid, Grid$x.int, Grid$dx
  
  O2tran <- tran.1D (C=O2, C.up=bwO2, dx=Grid)
  - Other arguments allow specific transport terms to be used
  ```
Solving the maths
Solving the maths

- The deSolve and rootSolve packages
Solving the maths

- The deSolve and rootSolve packages
 - rootSolve: ‘Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations’
Solving the maths

- The deSolve and rootSolve packages
 - rootSolve: ‘Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations’
 - deSolve: ‘General solvers for initial value problems of ordinary differential equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE), and delay differential equations (DDE).’
Solving the maths (cont...)
Solving the maths (cont…)

– Simple to implement
Solving the maths (cont...)

– Simple to implement

```r
modelFunction <- function(t, y, pars){
  # implementation of transport and differential equations; e.g:
  OC <- y[1:100]; O2 <- y[101:200]
  oxicMin <- r*OC*(O2/(O2+ksO2oxic))
}
```
Solving the maths (cont…)

– Simple to implement

```r
modelFunction <- function(t, y, pars){
    #implementation of transport and differential
    #equations; e.g:
    OC <- y[1:100]; O2 <- y[101:200]
    oxicMin <- r*OC*(O2/(O2+ksO2oxic))
}

ss.output <- steady.1D(y=rep(10,2*100),
    func=modelFunction, parms=c(r=10, ksO2oxic=1))
```
- Simple to implement

modelFunction <- function(t, y, pars){
 #implementation of transport and differential equations; e.g:
 OC <- y[1:100]; O2 <- y[101:200]
 oxicMin <- r*OC*(O2/(O2+ksO2oxic))
}

ss.output <- steady.1D(y=rep(10,2*100),
 func=modelFunction, parms=c(r=10, ksO2oxic=1))

dyn.output <- ode.1D(y=ss.output$y, times=0:364,
 func=modelFunction, parms=pars)
Data management

- Data
 - Multiple sites, cruises, repeat measurements & parameters
Data management

- Multiple sites, cruises, repeat measurements

- Parameters

- North Dogger
- Tyne
- Osyter Grounds
- Sean Gasfields
- Warp

OMC - Martin Weinelt
Data management

- Data
 - Multiple sites, cruises, repeat measurements & parameters

- R + MySQL (+ RJDBC/rJava)
Data management

- Data
 - Multiple sites, cruises, repeat measurements & parameters
- R + MySQL (+ RJDBC/rJava)
Data management

- Data
 - Multiple sites, cruises, repeat measurements & parameters

- R + MySQL (+ RJDBC/rJava)

- Post-processing / data consistency checking carried out in R
Data management

- Data
 - Multiple sites, cruises, repeat measurements & parameters

- R + MySQL (+ RJDBC/rJava)

- Post-processing / data consistency checking carried out in R

- Allows model calibration to be carried out
Model testing & model calibration
Model testing & model calibration

- Sensitivity analysis
 - Allows us to discover the most sensitive model parameters
Model testing & model calibration

- Sensitivity analysis
 - Allows us to discover the most sensitive model parameters

- Genetic algorithm
 - (Relatively) efficient method of making model output fit real data
Model testing & model calibration

- Sensitivity analysis
 - Allows us to discover the most sensitive model parameters

- Genetic algorithm
 - (Relatively) efficient method of making model output fit real data
Future ideas / personal interests
Future ideas / personal interests

- Web-based model-runs via R + python (mod_python / rpy2)
Future ideas / personal interests

- Web-based model-runs via R + python (mod_python / rpy2)
 - R would provide better graphics than currently available via PHP libraries
Future ideas / personal interests

- Web-based model-runs via R + python (mod_python / rpy2)
 - R would provide better graphics than currently available via PHP libraries
 - Greater access for non-modeller researchers
Future ideas / personal interests

- Web-based model-runs via R + python (mod_python / rpy2)
 - R would provide better graphics than currently available via PHP libraries
 - Greater access for non-modeller researchers
 - Public engagement of science
Any questions?

- **Acknowledgements:**
 - **Funding:** NERC & Defra
 - **University of Southampton**
 - Boris Kelly-Gerreyn, Peter Statham, Adrian Martin, Andy Yool, John Hemmings, Charlie Thompson, Carl Amos
 - **Netherlands Institute of Ecology**
 - Karline Soetaert, Filip Meysman
 - **University of Portsmouth**
 - Gary Fones, Fay Couceiro, Adam Hamilton
 - **Cefas**
 - John Aldridge, Ruth Parker, Dave Sivyer, Johan van Molen, Naomi Greenwood, Elke Neubacher
 - **UEA**
 - Keith Weston
 - **Partrac Ltd**
 - Kevin Black, Rachel Helsby
 - Crew of Cefas Endeavour