Analysing Anomaly Detection Methods For Time Series Using R
Structure

1. Context and Motivation
2. Anomalies and Outcomes
3. Detection Methods and Analysing them using R
Context and Motivation
Situations

1. A tv show talks about energy savings and causes a big spike in online traffic
2. A bug is released onto an important page in our funnel, causing a big drop in users completing our energy process
3. A product is taken off our energy tariff price comparison page, causing a drop in users proceeding to the next step.
4. News stories over several days causes an increase in Google traffic to one of our guides pages.
How these changes are often noticed

1. ‘Oh, traffic has gone up on the site!’
2. ‘Why has this KPI dropped in the last two hours?’
3. ‘Hmm, this landing page started getting loads of traffic 3 days ago’
Challenges

- Real time data streams can’t be checked constantly in a reliable way by people with many other things to do.
- It is time consuming to check thousands of time series regularly for changes
Anomalies and Outcomes
Anomaly: What is it?

- Anomaly: something that is different from what is expected, or not in agreement with something else.
- Expected ranges and values are defined differently by different methods.
- Our definition of anomaly will change with the methods.
Outcomes

1. Quickly and reliably detect large and important anomalies
2. Eventually and reliably detect less important anomalies
3. To indicate where to look to find out why the anomaly occurred
4. Do the above without many false positives
Detection Methods and Analysing them in R
A Few Approaches

1. Manually setting max/min thresholds based on time
2. Robust Principal Component Analysis
3. Changepoint Detection
Setting Maximum and Minimum Thresholds Based on Time
Setting Max and Min Thresholds

1. Choose a metric you record in real time
2. (Optional) transform into a new metric over a period of recent time.
3. Set upper and lower limits for this metric - if the metric goes outside these bounds, detect an anomaly.
 - Limits can depend on time. If you have seasonal data, then the limits can depend on the time in each season.
 - Send an alert to interrupt key people
Pageviews to Important Page By Minute For Example Week
- Extracted 31 weeks of data
- Have ten minute rolling sum buckets
- Create a detector function which classifies a point as anomalous if it is equal to 0
- Group by weekday - hour combination
- For each of these hours, find out what proportion of days in our 31 week dataset would have an alert fired off.
- Have a program check the datastream every few minutes outside of those nighttime hours, send an alert if zero pageviews detected.
- We can do better.
- Ignore nighttime hours, try a couple of arbitrary thresholds
Lowest 3 Ten Minute Important Page Pageviews
Measured Over Last 31 Weeks

Ascending Pageview Count Order
1
2
3
Next Step

- Find the minimum pageviews for each weekday hour bucket for each week
- Create 3 detectors:
 - First: detect anomaly if pageviews is less than or equal to the *lowest recorded* value for that weekday hour bucket in the historical dataset
 - Second: detect anomaly if pageviews is less than or equal to the *second lowest* recorded value for that weekday hour bucket in the historical dataset
 - Third: detect anomaly if pageviews is less than or equal to the *third lowest* recorded value for that weekday hour bucket in the historical dataset
Proportion of Days Anomalies Detected by Weekday For Lowest Hour Bucket Minima

Weekday Number

mean_alerts1

mean_alerts2

mean_alerts3
Useful Packages

- Dplyr or Data Table
- Lubridate and Zoo
- RcppRoll and Zoo
- Reshape2
- Ggplot2
Robust Principal Component Analysis
Robust Principal Component Analysis

Data Cleaning:

1. Start with a timeseries
2. Choose an interval of time that corresponds to a season in the series
3. Create a matrix D with each row as one of these intervals, in order
4. Whiten each column - mean to zero and variance to 1

Actual RPCA step:

5. Find a way of representing this matrix as a low rank matrix L added to a sparse matrix S added to an error matrix E. Transform into original space.
Is there an anomaly here? Yes. Yes there is.
<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>t5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>2.47</td>
<td>2.43</td>
<td>0.97</td>
<td>1.26</td>
<td>2.63</td>
</tr>
<tr>
<td>s2</td>
<td>2.56</td>
<td>2.82</td>
<td>1.64</td>
<td>1.15</td>
<td>1.70</td>
</tr>
<tr>
<td>s3</td>
<td>2.92</td>
<td>2.50</td>
<td>24.58</td>
<td>0.94</td>
<td>2.29</td>
</tr>
<tr>
<td>s4</td>
<td>2.84</td>
<td>2.90</td>
<td>1.10</td>
<td>0.67</td>
<td>2.97</td>
</tr>
<tr>
<td>s5</td>
<td>2.83</td>
<td>2.68</td>
<td>1.60</td>
<td>0.90</td>
<td>2.16</td>
</tr>
</tbody>
</table>

+---+---+---+---+---+
s1	0	0	0	0
s2	0	0	0	0
s3	0	0	23	0
s4	0	0	0	0
s5	0	0	0	0
Use Netflix Surus Package

```r
> library(devtools)
> install_github(repo = "Surus", username = "Netflix", subdir = "resources/R/RAD")

> ?AnomalyDetection.rpca

AnomalyDetection.rpca(X, frequency = 7, dates = NULL, autodiff = T,
forcediff = F, scale = T, L.penalty = 1,
s.penalty = 1.4/sqrt(max(frequency, ifelse(is.data.frame(X), nrow(X),
length(X))/frequency))), verbose = F)
```
Value

- X_transform. The transformation applied to the time series, can be the identity or could be differencing
- L_transform. The low rank component in the transformed space
- S_transform. The sparse outliers in the transformed space
- E_transform. The noise in the transformed space
Apply to Data

- 31 weeks, 168 hours each week of pageviews
- Use default S penalty
- Prioritise our weeks.
- Rank each week with the maximum absolute S value recorded
Week with Max Absolute S Rank: 2

important_page_pageviews

S_transform

L_transform

Hour of Week:
- Monday 00
- Tuesday 00
- Wednesday 00
- Thursday 00
- Friday 00
- Saturday 00
- Sunday 00
- Monday 00
Week with Max Absolute S Rank: 3

important_page_pageviews

Pageviews

S_transform

L_transform

Hour of Week

Monday 00 Tuesday 00 Wednesday 00 Thursday 00 Friday 00 Saturday 00 Sunday 00 Monday 00
AnomalyDetection.r pca(X, frequency = 7, dates = NULL, autodiff = T, forcediff = F, scale = T, L.penalty = 1, s.penalty = 1.4/sqrt(max(frequency, ifelse(is.data.frame(X), nrow(X), length(X))/frequency))), verbose = F)
Function Being Minimized

\[0.5 \times \text{EuclideanNorm}(X-L-S)^2 + \text{LPenalty} \times \text{NuclearNorm}(L) + \text{SPenalty} \times \text{L1Norm}(S) \]
Changepoints
Changepoints for Means

1. Choose a timeseries
2. Assume that a known probability distribution with unknown mean generates the data at each point.
3. Find a likely partition on which the mean is constant on each segment.
Changepoint Package

- Available on CRAN
- Can find changepoints for both variances and means
- Use `cpt.mean` for detecting changes in mean.

```r
cpt.mean(data, penalty="MBIC", pen.value=0, method="AMOC", q=5, test.stat="Normal", class=TRUE, param.estimates=TRUE, minseglen=1)
```
y=c(rnorm(25, 15, 2), rnorm(15, 20, 2), rnorm(20, 10, 4))
Method = "AMOC" Penalty = "MBIC"
\texttt{Method = "PELT" Penalty = "MBIC"}

\begin{verbatim}
y=c(rnorm(25, 15, 2), rnorm(15, 20, 2), rnorm(20, 10, 4))
\end{verbatim}
y = c(rnorm(25, 15, 2), rnorm(15, 20, 2), rnorm(20, 10, 4))
Method = "PELT" Penalty = "Manual" pen.value = 200
y = c(rnorm(25, 15, 2), rnorm(15, 20, 2), rnorm(20, 10, 4))
Method = "PELT" Penalty = "Manual" pen.value = 100
Cpt.mean outputs vectors with length = no. of changepoints.

cpt.mean.vec <- function(x, method = 'PELT', penalty = 'MBIC', v) {
 m <- cpt.mean(x, method = method, penalty = penalty, pen.value = v)
 m_cpts <- m@cpts
 reps <- m@cpts - lag(m@cpts, default = 0)
 m_next_cpts <- rep(m_cpts, reps)
 m_means <- m@param.est$mean
 m_next_step_size <- rep(c(m_means[2:length(m_means)]- m_means[1:(length(m_means)-1)], 0),reps)
 m_current_means <- rep(m_means, reps)
 output <- data.frame(current_means = m_current_means, next_cpt = m_next_cpts, next_step_size = m_next_step_size)
 return(output)
}
Useful Working Pattern

```r
> head(df, 15)
    segment timestamp group metric
 1       1        1    A   23.7
 2       1        2    A   22.0
 3       1        3    A   18.2
 4       1        4    A   19.3
 5       1        5    A   17.8
 6       2        6    A   14.9
 7       2        7    A   21.9
 8       2        8    A   26.3
 9       2        9    A   26.1
10      2       10    A   27.8
11      1        1    B   21.3
12      1        2    B   28.6
13      1        3    B   37.0
14      1        4    B   28.0
15      1        5    B   26.3
```
Useful Working Pattern

```r
> dfdm <- cbind(df, detection_metrics); head(dfdm, 15);

<table>
<thead>
<tr>
<th>segment</th>
<th>timestamp</th>
<th>group</th>
<th>metric</th>
<th>detection_metric1</th>
<th>detection_metric2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
<td>23.7</td>
<td>21.3</td>
<td>0.073</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A</td>
<td>22.0</td>
<td>21.3</td>
<td>0.069</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>A</td>
<td>18.2</td>
<td>21.3</td>
<td>0.106</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>A</td>
<td>19.3</td>
<td>21.3</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>A</td>
<td>17.8</td>
<td>21.3</td>
<td>0.191</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>A</td>
<td>14.9</td>
<td>21.3</td>
<td>0.106</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>A</td>
<td>21.9</td>
<td>21.3</td>
<td>0.165</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>A</td>
<td>26.3</td>
<td>21.3</td>
<td>0.004</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>A</td>
<td>26.1</td>
<td>21.3</td>
<td>0.135</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>A</td>
<td>27.8</td>
<td>21.3</td>
<td>0.105</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>B</td>
<td>21.3</td>
<td>24.7</td>
<td>0.236</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>B</td>
<td>28.6</td>
<td>24.7</td>
<td>0.339</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>B</td>
<td>37.0</td>
<td>24.7</td>
<td>0.213</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>B</td>
<td>28.0</td>
<td>24.7</td>
<td>0.357</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>B</td>
<td>26.3</td>
<td>24.7</td>
<td>0.321</td>
</tr>
</tbody>
</table>
```
Useful Working Pattern

```r
> dfdm <- group_by(dfdm, segment, group) %>%
+   mutate(max_seggroup_detect2_value = max(detection_metric2)) %>%
+   ungroup %>%
+   mutate(group_segment_ranking = dense_rank(-max_seggroup_detect2_value))
```
Useful Working Pattern

```r
> head(df, 15)
# A tibble: 15 × 9

  segment timestamp <int> <int> <fctr> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1     1         1     1      A    23.7 21.3 0.073 0.191     5   0.191
2     2         1     2      A    22.0 21.3 0.069 0.191     5   0.191
3     1         3     3      A    18.2 21.3 0.106 0.191     5   0.191
4     1         4     4      A    19.3 21.3 0.002 0.191     5   0.191
5     1         5     5      A    17.8 21.3 0.191 0.191     5   0.191
6     2         6     6      A    14.9 21.3 0.106 0.165     6   0.165
7     2         7     7      A    21.9 21.3 0.165 0.165     6   0.165
8     2         8     8      A    26.3 21.3 0.004 0.165     6   0.165
9     2         9     9      A    26.1 21.3 0.135 0.165     6   0.165
10     2        10     A    27.8 21.3 0.105 0.165     6   0.165
11     1        1     1      B    21.3 24.7 0.236 0.357     4   0.357
12     1        2     2      B    28.6 24.7 0.339 0.357     4   0.357
13     1        3     3      B    37.0 24.7 0.213 0.357     4   0.357
14     1        4     4      B    28.0 24.7 0.357 0.357     4   0.357
15     1        5     5      B    26.3 24.7 0.321 0.357     4   0.357
```
Useful Working Pattern

```r
> dfdm.melt <- melt(dfdm, c('segment', 'timestamp', 'group', 'group_segment_ranking'),
+                   measure.vars = c('metric', 'detection_metric1', 'detection_metric2'))
> head(dfdm.melt, 15)

<table>
<thead>
<tr>
<th>segment</th>
<th>timestamp</th>
<th>group</th>
<th>group_segment_ranking</th>
<th>variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A</td>
<td>metric</td>
<td>23.7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>A</td>
<td>metric</td>
<td>22.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>A</td>
<td>metric</td>
<td>18.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>A</td>
<td>metric</td>
<td>19.3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>A</td>
<td>metric</td>
<td>17.8</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>A</td>
<td>metric</td>
<td>14.9</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>A</td>
<td>metric</td>
<td>21.9</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>8</td>
<td>A</td>
<td>metric</td>
<td>26.3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>9</td>
<td>A</td>
<td>metric</td>
<td>26.1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>A</td>
<td>metric</td>
<td>27.8</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>metric</td>
<td>21.3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>B</td>
<td>metric</td>
<td>28.6</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>3</td>
<td>B</td>
<td>metric</td>
<td>37.0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>4</td>
<td>B</td>
<td>metric</td>
<td>28.0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>5</td>
<td>B</td>
<td>metric</td>
<td>26.3</td>
</tr>
</tbody>
</table>
```
Useful Working Pattern

```r
> filter(dfdm.melt, group_segment_ranking == 1) %>%
+  ggplot(aes(timestamp, value, fill = variable, group = variable)) +
+  geom_bar(stat = 'identity') +
+  facet_grid(variable~group, scale = 'free') +
+  guides(fill = FALSE) +
+  theme(text = element_text(size = 20))
```
- Do it. Start simple and iterate.
- Investigate boring but reliable methods first.
- Use historical data to figure out how often alerts would be fired off
Summary - Outside of Real-Time

- Prioritise, don’t classify
- RPCA (RAD package) for finding spikes and dips
- Changepoints (changepoint package) for finding longer-term changes
- Adjust penalty values to control sensitivity.
- Rank time series with understandable metrics first based on:
 - Changepoint mean differences
 - S values
 - Different penalty values
Thank You!

shannon.wirtz@uswitch.com

We’re recruiting: https://www.uswitch.com/vacancies/