
Use of and Using R
as an Object

Oriented Language
John James

mangosolutions john@mango-solutions.com

Why?

• Encapsulation

– It is good to think in nouns and not verbs. Thinking in

nouns forces a definition of what are the concepts of

the problem. Verbs are about solutions. Run from

these.

• Abstraction

– The more generally we think about a problem the

more we see its actual structure. The initial view we

have of a problem is generally wrong and often

muddled. Much problem solving is about determining

the correct view to solve it.

Object Orientation

• Object-oriented programming is a style of programming that has become
popular in recent years. Much of the popularity comes from the fact that it
makes it easier to write and maintain complicated systems. It does this
through several different mechanisms.

• Central to any object-oriented language are the concepts of class and of
methods. A class is a definition of an object. Typically a class contains
several slots that are used to hold class-specific information. An object in
the language must be an instance of some class. Programming is based on
objects or instances of classes.

• Computations are carried out via methods. Methods are basically functions
that are specialized to carry out specific calculations on objects, usually of a
specific class. This is what makes the language object oriented. In R,
generic functions are used to determine the appropriate method. The
generic function is responsible for determining the class of its argument(s)
and uses that information to select the appropriate method.

http://cran.r-project.org/doc/manuals/R-lang.html

S3 Generic Methods

• Users can easily write their own methods and generic functions. A
generic function is simply a function with a call to UseMethod. A
method is simply a function that has been invoked via method
dispatch. This can be as a result of a call to either UseMethod or
NextMethod.

• It is worth remembering that methods can be called directly. That
means that they can be entered without a call to UseMethod having
been made and hence the special variables .Generic, .Class and
.Method will not have been instantiated. In that case the default
rules detailed above will be used to determine these.

• The most common use of generic functions is to provide print and
summary methods for statistical objects, generally the output of
some model fitting process. To do this, each model attaches a class
attribute to its output and then provides a special method that takes
that output and provides a nice readable version of it. The user then
needs only remember that print or summary will provide nice output
for the results of any analysis

S4 Generic Methods

• setGeneric(name, def= , group=list(),

valueClass=character(), where= , package=

, signature= , useAsDefault= ,

genericFunction= , simpleInheritanceOnly =

)

• When a call to a generic function is evaluated, a method
is selected corresponding to the classes of the actual
arguments in the signature. s information about the
actual classes.

• setMethod(f, signature=character(),

definition, where =

topenv(parent.frame()), valueClass = NULL,

sealed = FALSE)

C++ Templates

• Function templates are special functions
that can operate with generic types. This
allows us to create a function template
whose functionality can be adapted to
more than one type or class without
repeating the entire code for each type.

template <class myType>

myType GetMax (myType a, myType b) { return
(a>b?a:b);

 }

C++ Templates

• Class Templates are used where we have
multiple copies of code for different data types
with the same logic..

template <typename T>

class MyQueue

{

 std::vector<Tdata;

 public:

 void Add(T const &d);

 void Remove();

 void Print();

};

What’s the problem?

• Easy to create a class in R and encapsulate methods,
and data

setClass("S1", representation(X ="numeric",
I="integer"))

[1] "S1"

inst1 <- new("S1", x=pi, i=as.integer(12))

inst2 <- new("S1", x=log(10),
i=as.integer(4))

• Default methods and functions need to be separately
defined

inst1[1]

Error in inst1[1] : object of type 'S4' is
not subsettable

Code Generators

method.skeleton("show", "s1")

setMethod("show",

 signature(object = "s1"),

 function (object)

 {

 stop("Need a definition for

the method here")

 }

)

Example data

<?xml version="1.0" encoding="UTF-8"?>

<s1 xmlns:xsi="http://www.w3.org/2001/

 XMLSchema-instance">

 <X>3.14159</X>

 <I>-11</I>

</S1>

XML Package

> s1 <- xmlRoot(xmlTreeParse('c:/My Eclipse/rplate/rplate/inst/xml/s1.xml'))

> xmlName(s1)

[1] "s1"

> xmlChildren(s1)[[1]]

<x>3.14159</x>

> makeClassTemplate(xmlChildren(s1)[[1]], types='numeric')

$name

[1] "x"

$slots

 text

"ANY"

$def

[1] "setClass('x',\n representation('text' = 'ANY'))"

$coerce

[1] "setAs('XMLAbstractNode', 'x', function(from) xmlToS4(from))"

>

> new('x')

An object of class "x"

Slot "text":

NULL

Understand the data

rplate extension

• Work from the xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="X" type="xs:double"/>

 <xs:element name="I" type="xs:integer"/>

 <xs:element name="S1">

 <xs:complexType>

 <xs:sequence>

 <xs:element id="Real" ref="X"/>

 <xs:element id="Int" ref="I"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Using templates

• require(rplate)

• XSD <- xmlRoot(xmlTreeParse('c:/My
Eclipse/rplate/rplate/inst/xml/S1.xsd'))

• xsdTemplate(node=xmlChildren(XSD)[[1]])

• xsdTemplate(node=xmlChildren(XSD)[[2]])

• xsdTemplate(node=xmlChildren(XSD)[[3]])

• s <- new('S1', Real=new('X', text=3.14))

• > s

• An object of class "S1"

• list()

• Slot "Real":

• An object of class "X"

• list()

• Slot "text":

• [1] 3.14

• Slot "Int":

• An object of class "I"

• list()

• > S4Toxml(s)

• <S1>

• <X>3.14</X>

• </S1>

Conclusions

• It is both useful and practical to generate R
classes from a data definition

• Templates reduces the volume of R code that
has the be defined.

• Checking of methods and programming is
easier, as it produces readable code: the
unreadable part is generated from data
description developed within common tools

• Need: always use ‘setters’ (get, set) and (try to)
hide ‘@’

