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Functional Languages 

 Static Typing 

 Functions as first class “citizens” 

 Passing functions as arguments 

 Returning functions as results (partially applying functions) 

 (often involves lots of recursion) 

 Examples 

 ML (OCAML) 

 Haskell 

 Scheme 
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Static Typing (vs Dynamic Typing) 

> 1+"c" 

Error in 1 + "c" : non-numeric argument to binary operator 

> if(FALSE) {1+"c"} else {print("c")} 

[1] "c“ 

 

 

b = if False then (1+"c") else 1 

perm.hs:82:19: 

    No instance for (Num [Char]) 

      arising from the literal `1' at perm.hs:82:19 

    Possible fix: add an instance declaration for (Num [Char]) 

    In the first argument of `(+)', namely `1' 

    In the expression: (1 + "c") 

    In the expression: if False then (1 + "c") else 1 
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Functions as “First Class Objects” 

add :: (Int,Int) → Int 

add (x,y) = x + y 

 

perform_operation :: ((Int,Int) → Int) → Int 

perform_ operation f = f(3,4) 

 

perform_operation_with_3 :: ((Int,Int) → Int) → Int → Int  

perform_ operation f x = f(3,x) 

 

add_with_3 = perform_operation_with_3 add 

add_with_3 5 

 

> 8 
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Example 

Theory 

Task def 

Task 

Data 

Results 

Summary 

Company 

BBG Code 

Data 

Model 1  Model 2 

Practice 

Summary 1 Summary 2 <? 
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Example 

Theory 

Task def 

Task 

Data 

Results 

Summary 

Company 

BBG Code 

Data 

Model 1  Model 2 

Practice 

Summary 1 Summary 2 

[String] 

[(string,string)] 

[array] 

[<objects>] [<objects>] 

Practice 

Int Int <? 

<? 

[1,2,3] is a list containing 1,2,3 
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[Company Name] 

[Code] 

[array of Option Prices] 

[<Emp model>] [<BS model>] 

Total MSE Total MSE <? 

[String] 

[String] 

[array] 

[<object>] [<object>] 

Int Int <? 
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Map and fold 

map ::  ((a → b),[a]) → [b] 

fold ::  (((a,b) →a),a,[b]) → a 

[String] 

[String] 

[Double Array] 

[<Object>] [<Object>] 

Int Int <? 

fold ::  (((Int,<lm obj>) → Int),Int,[<lm obj>]) → Int 

lookup ::  String → String 

get_data :: String → Double Array 

model ::  Double Array → Object 
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Folds I 

What does fold do? 

 

Think of a conveyor: 

conveyor :: [parts] → partly_built_car 

worker :: (part,partly_built_car) → partly_built_car 

 

fold ::  (((, ) → ), ,[]) →  

fold :: ((part,partly_built_car) → partly_built_car, partly_built_car, [parts]) → partly_built_car 

fold (funct, almost_car, [ ])  = almost_car 

fold (worker, almost_car, part:other_parts)  = fold(worker, worker(part,almost_car), other_parts) 

 

What’s the difference between this and: 

fold (worker, almost_car, part:other_parts)  = worker(part,fold(worker, almost_car, other_parts)) 
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Folds II 

 

 

Summary in the previous slide can be implemented as follows: 

 

obj_list = <list of lm objects>         # x:: [Object] 

mse_list = map(extract_MSE, X)  # extract_MSE :: Object → Double 

summary_stat = sum(mse_list) 

 

So, how do we write “sum” functional-style ??? 

sum :: [Double] → Double 

sum [ ] = 0 

sum (x:xs) = x + sum(xs) 

OR notice that 

+ :: (Double, Double) → Double 

So 

sum xs = fold(+,0.0,xs) 
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Functional R 

map = lapply 

fold = reduce 

Also: 

Mapply 

Vectorize 
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In R 

> A = list(3,4) 

> add_3 = function(x,y=3) x+y 

> add = function(x,y) x+y 

> lapply(A,add_3) 

[[1]] 

[1] 6 

 

[[2]] 

[1] 7 

 

> lapply(A,add) 

Error in FUN(X[[1L]], ...) : element 2 is empty; 

   the part of the args list of '+' being evaluated was: 

   (x, y) 
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In Haskell 

-- Compile time error which simply does not occur in dynamically typed languages 

new_list = map (add_one) ["a", "b", "c"]  

perm.hs:59:26: 

    Couldn't match expected type `Int' against inferred type `[Char]' 

    In the expression: "a" 

    In the second argument of `map', namely `["a", "b", "c"]' 

    In the expression: map (add_one) ["a", "b", "c"] 

 

never_error = if (True) then [ ] else  (map (add_one) ["a", "b", "c"]) 

perm.hs:55:54: 

    Couldn't match expected type `Int' against inferred type `[Char]' 

    In the expression: "a" 

    In the second argument of `map', namely `["a", "b", "c"]' 

    In the expression: (map (add_one) ["a", "b", "c"]) 
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Partial Function Application in R 

optim(par, fn, gr = NULL, ... , method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"))  

 

Arguments 

... Further arguments to be passed to fn and gr. 

 

f = function(x) log(x)+1 

obj_fun = function(x,f)  (x-f(x))^2 

solution = optim(1000, obj_fun, NULL, f, method="BFGS") 

 

 



Client’s logo 

if needed 

12 August 2015 

 CORPORATE & INVESTMENT BANKING 

16 

Partial Function Application in Haskell 

f :: Double → Double 

f x = log(x) + 1 

obj_fun :: (Double → Double) → Double → Double 

obj_fun f x = (x-(f x))^2 

a = optim(1000, (obj_fun f), method = "BFGS") 
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Some more partial function application 

Consider the function mapply (in fact, it’s more general than that): 

mapply :: ((, ) →,[],[]) →[]) 

 

list_of_stuff = list("a","b","c")                   ########################## [“a”,”b”,”c”] 

some_labels = as.list(seq(10,14,by=2))  ########################## [10,12,14] 

mapply(pair_up, list_of_stuff,some_labels, SIMPLIFY=FALSE) ###### [ [“a”,10],[”b”,12],[”c”,14] ] 

 

There is also a function called Vectorize: 

Vectorize :: ((, ) →) →(([],[]) →[]) 

 

new_function = Vectorize(pair_up, SIMPLIFY=FALSE) 

new_function(list_of_stuff, some_labels) 

in Haskell this happens automatically, mapply :: ((, ) →) →[] →[] →[] 
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ins_every_position :: a -> [a] -> [[a]] 

ins_every_position elt lst = insert elt [] lst 

 

insert :: a -> [a] -> [a] -> [[a]] 

insert elt front [ ]  = [front ++ [elt]] 

insert elt front (x:xs)  = (front ++(elt:x:xs)):(insert elt xs (front++[x])) 

 

 


