
Client’s logo

if needed

12 August 2015

Introduction to Functional

Programming in R

Andrei Serjantov

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

2

Contents

 Introduction to Functional Programming

 Static Typing

 Functions as first class objects

 Higher Order Programming

 Map

 Fold

 Partial Function Application

 R and Haskell

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

3

Functional Languages

 Static Typing

 Functions as first class “citizens”

 Passing functions as arguments

 Returning functions as results (partially applying functions)

 (often involves lots of recursion)

 Examples

 ML (OCAML)

 Haskell

 Scheme

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

4

Static Typing (vs Dynamic Typing)

> 1+"c"

Error in 1 + "c" : non-numeric argument to binary operator

> if(FALSE) {1+"c"} else {print("c")}

[1] "c“

b = if False then (1+"c") else 1

perm.hs:82:19:

 No instance for (Num [Char])

 arising from the literal `1' at perm.hs:82:19

 Possible fix: add an instance declaration for (Num [Char])

 In the first argument of `(+)', namely `1'

 In the expression: (1 + "c")

 In the expression: if False then (1 + "c") else 1

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

5

Functions as “First Class Objects”

add :: (Int,Int) → Int

add (x,y) = x + y

perform_operation :: ((Int,Int) → Int) → Int

perform_ operation f = f(3,4)

perform_operation_with_3 :: ((Int,Int) → Int) → Int → Int

perform_ operation f x = f(3,x)

add_with_3 = perform_operation_with_3 add

add_with_3 5

> 8

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

6

Example

Theory

Task def

Task

Data

Results

Summary

Company

BBG Code

Data

Model 1 Model 2

Practice

Summary 1 Summary 2 <?

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

7

Example

Theory

Task def

Task

Data

Results

Summary

Company

BBG Code

Data

Model 1 Model 2

Practice

Summary 1 Summary 2

[String]

[(string,string)]

[array]

[<objects>] [<objects>]

Practice

Int Int <?

<?

[1,2,3] is a list containing 1,2,3

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

8

[Company Name]

[Code]

[array of Option Prices]

[<Emp model>] [<BS model>]

Total MSE Total MSE <?

[String]

[String]

[array]

[<object>] [<object>]

Int Int <?

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

9

Map and fold

map :: ((a → b),[a]) → [b]

fold :: (((a,b) →a),a,[b]) → a

[String]

[String]

[Double Array]

[<Object>] [<Object>]

Int Int <?

fold :: (((Int,<lm obj>) → Int),Int,[<lm obj>]) → Int

lookup :: String → String

get_data :: String → Double Array

model :: Double Array → Object

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

10

Folds I

What does fold do?

Think of a conveyor:

conveyor :: [parts] → partly_built_car

worker :: (part,partly_built_car) → partly_built_car

fold :: (((,) →), ,[]) →

fold :: ((part,partly_built_car) → partly_built_car, partly_built_car, [parts]) → partly_built_car

fold (funct, almost_car, []) = almost_car

fold (worker, almost_car, part:other_parts) = fold(worker, worker(part,almost_car), other_parts)

What’s the difference between this and:

fold (worker, almost_car, part:other_parts) = worker(part,fold(worker, almost_car, other_parts))

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

11

Folds II

Summary in the previous slide can be implemented as follows:

obj_list = <list of lm objects> # x:: [Object]

mse_list = map(extract_MSE, X) # extract_MSE :: Object → Double

summary_stat = sum(mse_list)

So, how do we write “sum” functional-style ???

sum :: [Double] → Double

sum [] = 0

sum (x:xs) = x + sum(xs)

OR notice that

+ :: (Double, Double) → Double

So

sum xs = fold(+,0.0,xs)

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

12

Functional R

map = lapply

fold = reduce

Also:

Mapply

Vectorize

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

13

In R

> A = list(3,4)

> add_3 = function(x,y=3) x+y

> add = function(x,y) x+y

> lapply(A,add_3)

[[1]]

[1] 6

[[2]]

[1] 7

> lapply(A,add)

Error in FUN(X[[1L]], ...) : element 2 is empty;

 the part of the args list of '+' being evaluated was:

 (x, y)

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

14

In Haskell

-- Compile time error which simply does not occur in dynamically typed languages

new_list = map (add_one) ["a", "b", "c"]

perm.hs:59:26:

 Couldn't match expected type `Int' against inferred type `[Char]'

 In the expression: "a"

 In the second argument of `map', namely `["a", "b", "c"]'

 In the expression: map (add_one) ["a", "b", "c"]

never_error = if (True) then [] else (map (add_one) ["a", "b", "c"])

perm.hs:55:54:

 Couldn't match expected type `Int' against inferred type `[Char]'

 In the expression: "a"

 In the second argument of `map', namely `["a", "b", "c"]'

 In the expression: (map (add_one) ["a", "b", "c"])

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

15

Partial Function Application in R

optim(par, fn, gr = NULL, ... , method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"))

Arguments

... Further arguments to be passed to fn and gr.

f = function(x) log(x)+1

obj_fun = function(x,f) (x-f(x))^2

solution = optim(1000, obj_fun, NULL, f, method="BFGS")

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

16

Partial Function Application in Haskell

f :: Double → Double

f x = log(x) + 1

obj_fun :: (Double → Double) → Double → Double

obj_fun f x = (x-(f x))^2

a = optim(1000, (obj_fun f), method = "BFGS")

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

17

Some more partial function application

Consider the function mapply (in fact, it’s more general than that):

mapply :: ((,) →,[],[]) →[])

list_of_stuff = list("a","b","c") ########################## [“a”,”b”,”c”]

some_labels = as.list(seq(10,14,by=2)) ########################## [10,12,14]

mapply(pair_up, list_of_stuff,some_labels, SIMPLIFY=FALSE) ###### [[“a”,10],[”b”,12],[”c”,14]]

There is also a function called Vectorize:

Vectorize :: ((,) →) →(([],[]) →[])

new_function = Vectorize(pair_up, SIMPLIFY=FALSE)

new_function(list_of_stuff, some_labels)

in Haskell this happens automatically, mapply :: ((,) →) →[] →[] →[]

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

18

ins_every_position :: a -> [a] -> [[a]]

ins_every_position elt lst = insert elt [] lst

insert :: a -> [a] -> [a] -> [[a]]

insert elt front [] = [front ++ [elt]]

insert elt front (x:xs) = (front ++(elt:x:xs)):(insert elt xs (front++[x]))

