Sy

* BNP PARIBAS
&

Introduction to Functional
Programming in R
culg Andrei Serjantov

12 August 2015

BNP PARIBAS CORPORATE & INVESTMENT BANKING
- g

! Client's logo
if needed I

Contents o .

m Introduction to Functional Programming
m Static Typing
m Functions as first class objects
m Higher Order Programming
m Map
= Fold
m Partial Function Application
m R and Haskell

2 12 August 2015

iyl

BNP PARIBAS

i

Functional Languages

B Static Typing
B Functions as first class “citizens”
m Passing functions as arguments
m Returning functions as results (partially applying functions)
B (often involves lots of recursion)
B Examples
= ML (OCAML)
m Haskell
m Scheme

12 August 2015

CORPORATE & INVESTMENT BANKING

! Client's logo
if needed I

iyl

BNP PARIBAS CORPORATE & INVESTMENT BANKING
-t

! Client's logo
if needed I

Static Typing (vs Dynamic Typing) e -

> 1+"C"

Errorin 1 + "c" : non-numeric argument to binary operator
> if(FALSE) {1+"c"} else {print("c")}

[1] IIC“

b = if False then (1+"c") else 1
perm.hs:82:19:
No instance for (Num [Char])
arising from the literal "1' at perm.hs:82:19
Possible fix: add an instance declaration for (Num [Chatr])
In the first argument of “(+)', namely "1
In the expression: (1 + "c")
In the expression: if False then (1 + "c") else 1

4 12 August 2015

BNP PARIBAS CORPORATE & INVESTMENT BANKING
- g

Client's logo
if needed

Functions as “First Class Objects” o g

add :: (Int,Int) — Int
add (x,y) =x+vy

perform_operation :: ((Int,Int) — Int) — Int
perform_ operation f = f(3,4)

perform_operation_with_3 :: ((Int,Int) — Int) — Int — Int
perform_ operation f x = (3,x)

add_with_3 = perform_operation_with_3 add
add_with_35

>8

5 12 August 2015

iyl

BNP PARIBAS CORPORATE & INVESTMENT BANKING

A
Example S 5
Theory Practice
Task def Company
Task BBG Code
Data Data
Results Model 1 Model 2
[Summary] [Summary 1 J<?[Summary 2]
6 12 August 2015

iyl

BNP PARIBAS

ol

Example

Theory

Task def

L 2

Task

Data

Results

\'

[Summary] [Summary 1]<?[Summary 2]

Practice

Company

Practice

2

BBG Code

[String]

}

L 2

Data

[(string,string)]

§

Model 1

Model 2

\v

\

[array]

Client’s logo
if needed

[1,2,3] is a list containing 1,2,3

[<objects>]

|![<Vobjects>]

\

Int

<

\

Int

iyl

BNP PARIBAS

A
Client’s log
[Company Name] [String]
[Code] [String]
[array of Option Prices] [array]
[<Emp model>] [<BS model>] [<object>] [<object>]
Total MSE]<?[Total MSE Int <? Int
8

iyl

BNP PARIBAS

ol

Map and fold

‘ map = ((@ — b),[a]) — [b]

\ fold :: (((a,b) —a),a,[b]) — a

CORPORATE & INVESTMENT BANKING

Client’s logo
if needed

[String]

L 2

lookup :: String — String

[String]

. get_data :: String — Double Array

[Double Array]

|

[<Object>]

model :: Double Array — Object

[<Object>]

\'fold > (((Int,<Im obj>) — Int),Int,[<Im obj>]) — Int \\

mo <ol wm

12 August 2015

\

iyl

BNP PARIBAS CORPORATE & INVESTMENT BANKING

i

10

! Client's logo
if needed I

Folds | e |

What does fold do?

Think of a conveyor:
conveyor :: [parts] — partly_built_car
worker :: (part,partly_built_car) — partly_built_car

fold :: (((a, B) —), o,[B]) — @

fold :: ((part,partly_built_car) — partly _built_car, partly built_car, [parts]) — partly _built_car
fold (funct, almost_car, []) = almost_car

fold (worker, almost_car, part:other_parts) = fold(worker, worker(part,almost_car), other_parts)

What'’s the difference between this and:
fold (worker, almost_car, part:other_parts) = worker(part,fold(worker, almost_car, other_parts))

12 August 2015

)
BNP PARIBAS
4

Folds Il

Summary in the previous slide can be implemented as follows:

obj_list = <list of Im objects> # x:: [Object]
mse_list = map(extract. MSE, X) # extract MSE :: Object — Double
summary_stat = sum(mse_list)

So, how do we write “sum” functional-style ??7?
sum :: [Double] — Double

sum|[]=0

sum (x:xs) = x + sum(xs)

OR notice that

+ :: (Double, Double) — Double

So

sum xs = fold(+,0.0,xs)

11 12 August 2015

CORPORATE & INVESTMENT BANKING

! Client's logo
if needed I

iyl

BNP PARIBAS CORPORATE & INVESTMENT BANKING
-t
|
! Client's logo
! if needed 1

Functional R o .

map = lapply
fold = reduce
Also:

Mapply
Vectorize

12 12 August 2015

iyl

BNP PARIBAS CORPORATE & INVESTMENT BANKING
- g
Client's logo !
! if needed !
In R L. |
> A =1ist(3,4)

>add_3 = function(x,y=3) x+y
> add = function(x,y) x+y
> lapply(A,add_3)

[[1]]
[1] 6

[[2]]
[1] 7

> lapply(A,add)

Error in FUN(X[[1L]], ...) : element 2 is empty;
the part of the args list of '+' being evaluated was:
(X, y)

13 12 August 2015

iyl

BNP PARIBAS

i

14

In Haskell

-- Compile time error which simply does not occur in dynamically typed languages
new_list = map (add_one) ["a", "b", "c"]
perm.hs:59:26:
Couldn't match expected type "Int' against inferred type [Char]’
In the expression: "a"
In the second argument of ‘'map’, namely “[*a", "b", "c"|'
In the expression: map (add_one) ["a", "b", "c"]
never_error = if (True) then [] else (map (add_one) ['a", "b", "c"])
perm.hs:55:54:
Couldn't match expected type "Int' against inferred type "[Char]’
In the expression: "a"
In the second argument of ‘'map’, namely ['a", "b", "c"]'
In the expression: (map (add_one) ['a", "b", "c"])

12 August 2015

CORPORATE & INVESTMENT BANKING

! Client's logo
if needed I

BNP PARIBAS CORPORATE & INVESTMENT BANKING
- g

! Client's logo
if needed I

Partial Function Application in R S |

optim(par, fn, gr = NULL, ... , method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"))

Arguments
... Further arguments to be passed to fn and gr.

f = function(x) log(x)+1
obj_fun = function(x,f) (x-f(x))"*2
solution = optim(1000, obj_fun, NULL, f, method="BFGS")

15 12 August 2015

)
BNP PARIBAS
4

Partial Function Application in Haskell

f :: Double — Double

fx=log(x) + 1

obj_fun :: (Double — Double) — Double — Double
obj_fun f x = (x-(f x))"2

a = optim(1000, (obj_fun f), method = "BFGS")

16 12 August 2015

CORPORATE & INVESTMENT BANKING

Client's logo
if needed

BNP PARIBAS CORPORATE & INVESTMENT BANKING
- g

Client's logo
if needed

Some more partial function application o i

Consider the function mapply (in fact, it's more general than that):
mapply :: ((a, B) —v.[al,[B]) —[¥])

list of stuff = list("a","b","c") HHH AR (37D, C]
some_labels = as.list(seq(10,14,by=2)) ####HHHHHHHHHHHHHHHEHHHHAAE [10,12,14]
mapply(pair_up, list_of stuff,some_labels, SIMPLIFY=FALSE) ###### [[‘a”,10],[’b",12],[’c”,14]]

There is also a function called Vectorize:
Vectorize :: ((a, B) —v) —(([a],[B]) —[v])

new_function = Vectorize(pair_up, SIMPLIFY=FALSE)
new_function(list_of stuff, some_labels)
in Haskell this happens automatically, mapply :: ((«,) —%) —[a] —[6 —[/

17 12 August 2015

)
BNP PARIBAS
4

ins_every_position :: a -> [a] -> [[a]]
ins_every_position elt Ist = insert elt [] Ist

insert :: a ->[a] -> [a] -> [[a]]
insert elt front [] = [front ++ [elt]]
insert elt front (x:xs) = (front ++(elt:x:xs)):(insert elt xs (front++[x]))

18 12 August 2015

CORPORATE & INVESTMENT BANKING

Client's logo
if needed

