
Client’s logo

if needed

12 August 2015

Introduction to Functional

Programming in R

Andrei Serjantov

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

2

Contents

 Introduction to Functional Programming

 Static Typing

 Functions as first class objects

 Higher Order Programming

 Map

 Fold

 Partial Function Application

 R and Haskell

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

3

Functional Languages

 Static Typing

 Functions as first class “citizens”

 Passing functions as arguments

 Returning functions as results (partially applying functions)

 (often involves lots of recursion)

 Examples

 ML (OCAML)

 Haskell

 Scheme

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

4

Static Typing (vs Dynamic Typing)

> 1+"c"

Error in 1 + "c" : non-numeric argument to binary operator

> if(FALSE) {1+"c"} else {print("c")}

[1] "c“

b = if False then (1+"c") else 1

perm.hs:82:19:

 No instance for (Num [Char])

 arising from the literal `1' at perm.hs:82:19

 Possible fix: add an instance declaration for (Num [Char])

 In the first argument of `(+)', namely `1'

 In the expression: (1 + "c")

 In the expression: if False then (1 + "c") else 1

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

5

Functions as “First Class Objects”

add :: (Int,Int) → Int

add (x,y) = x + y

perform_operation :: ((Int,Int) → Int) → Int

perform_ operation f = f(3,4)

perform_operation_with_3 :: ((Int,Int) → Int) → Int → Int

perform_ operation f x = f(3,x)

add_with_3 = perform_operation_with_3 add

add_with_3 5

> 8

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

6

Example

Theory

Task def

Task

Data

Results

Summary

Company

BBG Code

Data

Model 1 Model 2

Practice

Summary 1 Summary 2 <?

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

7

Example

Theory

Task def

Task

Data

Results

Summary

Company

BBG Code

Data

Model 1 Model 2

Practice

Summary 1 Summary 2

[String]

[(string,string)]

[array]

[<objects>] [<objects>]

Practice

Int Int <?

<?

[1,2,3] is a list containing 1,2,3

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

8

[Company Name]

[Code]

[array of Option Prices]

[<Emp model>] [<BS model>]

Total MSE Total MSE <?

[String]

[String]

[array]

[<object>] [<object>]

Int Int <?

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

9

Map and fold

map :: ((a → b),[a]) → [b]

fold :: (((a,b) →a),a,[b]) → a

[String]

[String]

[Double Array]

[<Object>] [<Object>]

Int Int <?

fold :: (((Int,<lm obj>) → Int),Int,[<lm obj>]) → Int

lookup :: String → String

get_data :: String → Double Array

model :: Double Array → Object

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

10

Folds I

What does fold do?

Think of a conveyor:

conveyor :: [parts] → partly_built_car

worker :: (part,partly_built_car) → partly_built_car

fold :: (((, ) → ), ,[]) → 

fold :: ((part,partly_built_car) → partly_built_car, partly_built_car, [parts]) → partly_built_car

fold (funct, almost_car, []) = almost_car

fold (worker, almost_car, part:other_parts) = fold(worker, worker(part,almost_car), other_parts)

What’s the difference between this and:

fold (worker, almost_car, part:other_parts) = worker(part,fold(worker, almost_car, other_parts))

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

11

Folds II

Summary in the previous slide can be implemented as follows:

obj_list = <list of lm objects> # x:: [Object]

mse_list = map(extract_MSE, X) # extract_MSE :: Object → Double

summary_stat = sum(mse_list)

So, how do we write “sum” functional-style ???

sum :: [Double] → Double

sum [] = 0

sum (x:xs) = x + sum(xs)

OR notice that

+ :: (Double, Double) → Double

So

sum xs = fold(+,0.0,xs)

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

12

Functional R

map = lapply

fold = reduce

Also:

Mapply

Vectorize

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

13

In R

> A = list(3,4)

> add_3 = function(x,y=3) x+y

> add = function(x,y) x+y

> lapply(A,add_3)

[[1]]

[1] 6

[[2]]

[1] 7

> lapply(A,add)

Error in FUN(X[[1L]], ...) : element 2 is empty;

 the part of the args list of '+' being evaluated was:

 (x, y)

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

14

In Haskell

-- Compile time error which simply does not occur in dynamically typed languages

new_list = map (add_one) ["a", "b", "c"]

perm.hs:59:26:

 Couldn't match expected type `Int' against inferred type `[Char]'

 In the expression: "a"

 In the second argument of `map', namely `["a", "b", "c"]'

 In the expression: map (add_one) ["a", "b", "c"]

never_error = if (True) then [] else (map (add_one) ["a", "b", "c"])

perm.hs:55:54:

 Couldn't match expected type `Int' against inferred type `[Char]'

 In the expression: "a"

 In the second argument of `map', namely `["a", "b", "c"]'

 In the expression: (map (add_one) ["a", "b", "c"])

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

15

Partial Function Application in R

optim(par, fn, gr = NULL, ... , method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"))

Arguments

... Further arguments to be passed to fn and gr.

f = function(x) log(x)+1

obj_fun = function(x,f) (x-f(x))^2

solution = optim(1000, obj_fun, NULL, f, method="BFGS")

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

16

Partial Function Application in Haskell

f :: Double → Double

f x = log(x) + 1

obj_fun :: (Double → Double) → Double → Double

obj_fun f x = (x-(f x))^2

a = optim(1000, (obj_fun f), method = "BFGS")

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

17

Some more partial function application

Consider the function mapply (in fact, it’s more general than that):

mapply :: ((, ) →,[],[]) →[])

list_of_stuff = list("a","b","c") ########################## [“a”,”b”,”c”]

some_labels = as.list(seq(10,14,by=2)) ########################## [10,12,14]

mapply(pair_up, list_of_stuff,some_labels, SIMPLIFY=FALSE) ###### [[“a”,10],[”b”,12],[”c”,14]]

There is also a function called Vectorize:

Vectorize :: ((, ) →) →(([],[]) →[])

new_function = Vectorize(pair_up, SIMPLIFY=FALSE)

new_function(list_of_stuff, some_labels)

in Haskell this happens automatically, mapply :: ((, ) →) →[] →[] →[]

Client’s logo

if needed

12 August 2015

 CORPORATE & INVESTMENT BANKING

18

ins_every_position :: a -> [a] -> [[a]]

ins_every_position elt lst = insert elt [] lst

insert :: a -> [a] -> [a] -> [[a]]

insert elt front [] = [front ++ [elt]]

insert elt front (x:xs) = (front ++(elt:x:xs)):(insert elt xs (front++[x]))

